Relational Model

Advanced Topics in Foundations of Databases, University of Edinburgh, 2019/20

Relational Model

- Many ad hoc models before 1970
 - Hard to work with
 - Hard to reason about

- Data are stored in relations (or tables)
- Queried using a declarative language
- DBMS converts declarative queries into procedural queries that are optimized and executed
- Key Advantages
 - Simple and clean mathematical model (based on logic)
 - Separation of declarative and procedural

Relational Databases

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

	Airport	code	city
		VIE	Vienna
		LHR	London
Constants		LGW	London
VIE, LHR,		LCA	Larnaca
BA, U2,		GLA	Glasgow
Vienna, London,		EDI	Edinburgh

Relational Databases

Relational Databases

List all the airlines

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

List all the airlines

origin	destination	airline
VIE	LHR	BA
LHR	EDI	BA
LGW	GLA	U2
LCA	VIE	OS
	origin VIE LHR LGW LCA	origindestinationVIELHRLHREDILGWGLALCAVIE

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

{BA, U2, OS}

List the codes of the airports in London

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

List the codes of the airports in London

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

{LHR, LGW}

 π_{code} ($\sigma_{city='London'}$ Airport)

List the airlines that fly directly from London to Glasgow

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

List the airlines that fly directly from London to Glasgow

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

 π_{airline} ((Flight $\bowtie_{\text{origin=code}}$ ($\sigma_{\text{city='London'}}$ Airport)) $\bowtie_{\text{destination=code}}$ ($\sigma_{\text{city='Glasgow'}}$ Airport))

List the airlines that fly directly from London to Glasgow

Relational Algebra

- Selection: σ
- Projection: π
- Cross product: \times
- Natural join: ⋈
- Rename: p
- Difference: \ in bold are the primitive operators
- **Union**: ∪
- Intersection: ∩

Formal definitions can be found in any database textbook

List all the airlines

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

List all the airlines

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

{BA, U2, OS}

List the codes of the airports in London

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

List the codes of the airports in London

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

 $\{LHR, LGW\}$

{x | $\exists y Airport(x,y) \land y = London$ }

List the airlines that fly directly from London to Glasgow

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

List the airlines that fly directly from London to Glasgow

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS
			Ţ

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

 $\{z \mid \exists x \exists y \exists u \exists v Airport(x,u) \land u = London \land Airport(x,u) \land u = London\} \land Flight(x,y,z)\}$

{U2}

 $\{x_1, ..., x_k | \phi\}$ first-order formula with free variables $\{x_1, ..., x_k\}$

But, we can express "problematic" queries, i.e., depend on the domain

 $\{x \mid \forall y \ R(x,y)\} \qquad \{x \mid \neg R(x)\} \qquad \{x,y \mid R(x) \lor R(y)\}$

 $\{x_1, ..., x_k | \phi\}$ first-order formula with free variables $\{x_1, ..., x_k\}$

But, we can express "problematic" queries, i.e., depend on the domain

 $\{x \mid \forall y \ \mathsf{R}(x,y)\} \qquad \{x \mid \neg \mathsf{R}(x)\} \qquad \{x,y \mid \mathsf{R}(x) \lor \mathsf{R}(y)\}$

domain = {1,2,3} D = {R(1,1), R(1,2)}

 $\{x_1, ..., x_k | \phi\}$ first-order formula with free variables $\{x_1, ..., x_k\}$

But, we can express "problematic" queries, i.e., depend on the domain

 $\{x \mid \forall y \ R(x,y)\} \qquad \{x \mid \neg R(x)\} \qquad \{x,y \mid R(x) \lor R(y)\}$

domain = $\{1,2\}$ D = $\{R(1,1), R(1,2)\}$ Ans = $\{1\}$

 $\{x_1,...,x_k | \phi\}$ first-order formula with free variables $\{x_1, ..., x_k\}$

But, we can express "problematic" queries, i.e., depend on the domain

 $\{x \mid \forall y \ R(x,y)\} \qquad \{x \mid \neg R(x)\} \qquad \{x,y \mid R(x) \lor R(y)\}$

...thus, we adopt the active domain semantics - quantified variables range over the active domain, i.e., the constants occurring in the input database

Algebra = Calculus

A fundamental theorem (assuming the active domain semantics):

Theorem: The following query langauges are equally expressive

- Relational Algebra (RA)
- Domain Relational Calculus (DRC)
- Tuple Relational Calculus (**TRC**)

Note: Tuple relational calculus is the declarative language introduce by Codd. Domain relational

calculus has been introduced later as a formalism closer to first-order logic

Is Glasgow reachable from Vienna?

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

Is Glasgow reachable from Vienna?

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

{ $| \exists x \exists y \exists z \exists w \exists v Airport(x, Vienna) \land Airport(y, Glasgow) \land$ Flight(x, z, w) \land Flight(z, y, v)

Is Glasgow reachable from Vienna?

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

YES

Is Glasgow reachable from Vienna?

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

Is Glasgow reachable from Vienna?

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

Recursive query - not expressible in RA/DRC/TRC

(unless we bound the number of intermediate stops)

- The goal is to understand the complexity of evaluating a query over a database
- Our main technical tool is complexity theory
- What to measure? Queries may have a large output, and it would be unfair to count the output as "complexity"
- We therefore consider the following decision problems:
 - Query Output Tuple (QOT)
 - Boolean Query Evaluation (BQE)

A Few Words on Complexity Theory

details can be found in the standard textbooks see also notes on the webpage of the course

Complexity Classes

Consider a function $f: N \rightarrow N$

TIME(f(n))	=	$\{\Pi \mid \Pi \text{ is decided by some DTM in time O(f(n))}\}$
NTIME(f(n))	=	$\{\Pi \mid \Pi \text{ is decided by some NTM in time O(f(n))}\}$
SPACE(f(n))	=	{П П is decided by some DTM using space O(f(n))}

NSPACE(f(n)) = $\{\Pi \mid \Pi \text{ is decided by some NTM using space O(f(n))}\}$

Complexity Classes

• We can now recall the standard time and space complexity classes:

PTIME	=	U _{k>0} TIME(n ^k)
NP	=	U _{k>0} NTIME(n ^k)
EXPTIME	=	U _{k>0} TIME(2 ^{nk})
NEXPTIME	=	U _{k>0} NTIME(2 ^{nk})
LOGSPACE	=	SPACE(log n)
NLOGSPACE	=	NSPACE(log n)
PSPACE	=	U _{k>0} SPACE(n ^k)

these definitions are relying on two-

- tape Turing machines with a read-
- only and a read/write tape
- EXPSPACE = $U_{k>0}$ SPACE(2^{nk})
- For every complexity class C we can define its complementary class coC

Relationship Among Complexity Classes

$\mathsf{LOGSPACE} \subseteq \mathsf{NLOGSPACE} \subseteq \mathsf{PTIME} \subseteq \mathsf{NP}, \mathsf{coNP} \subseteq$

$PSPACE \subseteq EXPTIME \subseteq NEXPTIME, coNEXPTIME \subseteq \cdots$

Some useful notes:

- For a deterministic complexity class C, coC = C
- coNLOGSPACE = NLOGSPACE
- It is generally believed that PTIME \neq NP, but we don't know
- PTIME \subset EXPTIME \Rightarrow at least one containment between them is strict
- PSPACE = NPSPACE, EXPSPACE = NEXPSPACE, etc.
- But, we don't know whether LOGSPACE = NLOGSPACE

Complete Problems

- These are the hardest problems in a complexity class
- A problem that is complete for a class C, it is unlikely to belong in a lower class
- A problem Π is complete for a complexity class C, or simply C-complete, if:
 - 1. $\Pi \in C$
 - 2. Π is C-hard, i.e., every problem $\Pi' \in C$ can be efficiently reduced to Π

there exists a logspace algorithm that computes a function f such that

 $\mathbf{w} \in \Pi'$ iff $f(\mathbf{w}) \in \Pi$ - in this case we write $\Pi' \leq_L \Pi$

• To show that Π is C-hard it suffices to reduce some C-hard problem Π' to it

Some Complete Problems

• NP-complete

- SAT (satisfiability of propositional formulas)
- Many graph-theoretic problems (e.g., 3-colorability)
- Traveling salesman
- etc.
- PSPACE-complete
 - Quantified SAT (or simply QSAT)
 - Equivalence of two regular expressions
 - Many games (e.g., Geography)
 - etc.

Back to Query Languages

- The goal is to understand the complexity of evaluating a query over a database
- Our main technical tool is complexity theory
- What to measure? Queries may have a large output, and it would be unfair to count the output as "complexity"
- We therefore consider the following decision problems:
 - Query Output Tuple (QOT)
 - Boolean Query Evaluation (BQE)

Some useful notation:

- Given a database D, and a query Q, Q(D) is the answer to Q over D
- **adom**(D) is the active domain of D the constants occurring in D
- We write Q/k for the fact that the arity of Q is $k \ge 0$

L is some query language; for example, RA, DRC, etc. - we will see several query languages

QOT(L)

Input: a database D, a query $Q/k \in L$, a tuple of constants $t \in adom(D)^k$

Question: $t \in Q(D)$?

Some useful notation:

- Given a database D, and a query Q, Q(D) is the answer to Q over D
- **adom**(D) is the active domain of D the constants occurring in D
- We write Q/k for the fact that the arity of Q is $k \ge 0$

L is some query language; for example, RA, DRC, etc. - we will see several query languages

BQE(L)

Input: a database D, a Boolean query $Q \in L$

Question: is **Q**(D) non-empty?

QOT(L)

```
Input: a database D, a query Q/k \in L, a tuple of constants t \in adom(D)^k
```

Question: $t \in Q(D)$?

BQE(L)

Input: a database D, a Boolean query $Q \in L$

Question: is Q(D) non-empty?

Theorem: QOT(L) \equiv_{L} BQE(L), where L \in {RA, DRC, TRC}

 $(\equiv_{L} means logspace-equivalent)$

(let us show this for domain relational calculus)

Theorem: QOT(**DRC**) \equiv_{L} BQE(**DRC**)

Proof: (\leq_L) Consider a database D, a k-ary query Q = $\{x_1, ..., x_k \mid \phi\}$, and a tuple $(t_1, ..., t_k)$

Let $Q_{\text{bool}} = \{ | \exists x_1 \cdots \exists x_k (\phi \land x_1 = t_1 \land x_2 = t_2 \land \cdots \land x_k = t_k) \}$

Clearly, $(t_1,...,t_k) \in Q(D)$ iff $Q_{bool}(D)$ is non-empty

 (\geq_L) Trivial - a Boolean domain RC query is a domain RC query

Complexity Measures

• Combined complexity - both D and Q are part of the input

• Query complexity - fixed D, input Q

BQE[D](L)

Input: a Boolean query $Q \in L$

Question: is **Q**(D) non-empty?

• Data complexity - input D, fixed Q

BQE[Q](L)

Input: a database D

Question: is **Q**(D) non-empty?

Complexity of RA, DRC, TRC

Theorem: For $L \in \{RA, DRC, TRC\}$ the following hold:

- BQE(L) is PSPACE-complete (combined complexity)
- BQE[D](L) is PSPACE-complete, for a fixed database D (query complexity)
- BQE[Q](L) is in LOGSPACE, for a fixed query Q ∈ L (data complexity)

Proof hints:

- Recursive algorithm that uses polynomial space in Q and logarithmic space in D
- Reduction from QSAT (a standard PSPACE-hard problem)

Evaluating (Boolean) DRC Queries

Eval(D, ϕ) - for brevity we write ϕ instead of { | ϕ }

- If $\phi = R(t_1,...,t_k)$, then YES iff $R(t_1,...,t_k) \in D$
- If $\phi = \psi_1 \wedge \psi_2$, then YES iff Eval(D, ψ_1) = YES and Eval(D, ψ_2) = YES

• If
$$\phi = \neg \psi$$
, then NO iff Eval(D, ψ) = YES

• If $\phi = \exists x \psi(x)$, then YES iff for some $t \in adom(D)$, $Eval(D, \psi(t)) = YES$

Lemma: It holds that

- Eval(D, ϕ) always terminates this is trivial
- Eval(D,ϕ) = YES iff Q(D) is non-empty, where Q = { | ϕ }
- Eval(D, ϕ) uses O($|\phi| \cdot \log |\phi| + |\phi|^2 \cdot \log |D|$) space

Complexity of RA, DRC, TRC

Theorem: For $L \in \{RA, DRC, TRC\}$ the following hold:

- BQE(L) is PSPACE-complete (combined complexity)
- BQE[D](L) is PSPACE-complete, for a fixed database D (query complexity)
- BQE[Q](L) is in LOGSPACE, for a fixed query Q ∈ L (data complexity)

Proof hints:

- Recursive algorithm that uses polynomial space in Q and logarithmic space in D
- Reduction from QSAT (a standard PSPACE-hard problem)

SAT(L)

Input: a query $\mathbf{Q} \in \mathbf{L}$

Question: is there a (finite) database D such that Q(D) is non-empty?

EQUIV(L)

Input: two queries $Q_1 \in L$ and $Q_2 \in L$

Question: $Q_1 \equiv Q_2$? or $Q_1(D) = Q_2(D)$ for every (finite) database D?

CONT(L)

Input: two queries $Q_1 \in L$ and $Q_2 \in L$

Question: $Q_1 \subseteq Q_2$? or $Q_1(D) \subseteq Q_2(D)$ for every (finite) database D?

SAT(L)

Input: a query $Q \in L$

Question: is there a (finite) database D such that Q(D) is non-empty?

EQUIV(L)	these problems are important	
Input: two		
Question:	for optimization purposes	abase D?

CONT(L) Input: two queries $Q_1 \in L$ and $Q_2 \in L$ Question: $Q_1 \subseteq Q_2$? or $Q_1(D) \subseteq Q_2(D)$ for every (finite) database D?

SAT(L)

Input: a query $Q \in L$

Question: is there a (finite) database D such that Q(D) is non-empty?

- If the answer is no, then the input query Q makes no sense
- Query evaluation becomes trivial the answer is always NO!

EQUIV(L)

Input: two queries $Q_1 \in L$ and $Q_2 \in L$

Question: $Q_1 \equiv Q_2$? or $Q_1(D) = Q_2(D)$ for every (finite) database D?

- Replace a query Q_1 with a query Q_2 that is easier to evaluate
- But, we have to be sure that $Q_1(D) = Q_2(D)$ for every database D

CONT(L)

Input: two queries $Q_1 \in L$ and $Q_2 \in L$

Question: $Q_1 \subseteq Q_2$? or $Q_1(D) \subseteq Q_2(D)$ for every (finite) database D?

- Approximate a query Q_1 with a query Q_2 that is easier to evaluate
- But, we have to be sure that $Q_1(D) \subseteq Q_2(D)$ for every database D

SAT is Undecidable

Theorem: For L ∈ {**RA**, **DRC**, **TRC**}, SAT(L) is undecidable

Proof hint: By reduction from the halting problem.

Given a Turing machine M, we can construct a query $Q_M \in L$ such that:

M halts on the empty string iff there exists a database D such that Q(D) is non-empty

Note: Actually, this result goes back to the 1950 when Boris A. Trakhtenbrot proved that the problem of deciding whether a first-order sentence has a finite model is undecidable

EQUIV and CONT are Undecidable

An easy consequence of the fact that SAT is undecidable is that:

Theorem: For L ∈ {**RA**, **DRC**, **TRC**}, EQUIV(L) and CONT(L) are undecidable

Proof: By reduction from the complement of SAT(L)

- Consider a query Q ∈ L i.e., an instance of SAT(L)
- Let Q' be a query that is unsatisfiable, i.e., Q'(D) is empty for every D
- For example, when L = DRC, Q' can be the query { $| \exists x R(x) \land \neg R(x)$ }
- Clearly, Q is unsatisfiable iff $Q \equiv Q'$ (or even $Q \subseteq Q'$)

Recap

- The main languages for querying relational databases are:
 - Relational Algebra (**RA**)
 - Domain Relational Calcuclus (DRC)
 - Tuple Relational Calculus (**TRC**)

RA = DRC = TRC

(under the active domain semantics)

- Evaluation is decidable, and highly tractable in data complexity
 - Foundations of the database industry
 - The core of SQL is equally expressive to **RA/DRC/TRC**

- Satisfiability, equivalence and containment are undecidable
 - Perfect query optimization is impossible