
Relational	Model

Advanced	Topics	in	Foundations	of	Databases,	University	of	Edinburgh,	2019/20

Relational	Model

• Many	ad	hoc	models	before	1970

− Hard	to	work	with

− Hard	to	reason	about

• 1970:	Relational	Model	by	Edgar	Frank	Codd

− Data	are	stored	in	relations (or	tables)

− Queried	using	a	declarative	language

− DBMS	converts	declarative	queries	into	procedural	queries that	are	

optimized	and	executed

• Key	Advantages

− Simple	and	clean	mathematical	model	(based	on	logic)

− Separation	of	declarative	and	procedural

Relational	Databases

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

Constants

VIE,	LHR,	…

BA,	U2,	…

Vienna,	London,	…

Relational	Databases

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

Relations

Constants

VIE,	LHR,	…

BA,	U2,	…

Vienna,	London,	…

Relational	Databases

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

Constants

VIE,	LHR,	…

BA,	U2,	…

Vienna,	London,	…

Relations

Tuples

Relational	atoms

Flight(LHR,EDI,BA)

Airport(LGW,London)

Querying:	Relational	Algebra

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List	all	the	airlines

Querying:	Relational	Algebra

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List	all	the	airlines

πairline Flight

{BA,	U2,	OS}

Querying:	Relational	Algebra

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List	the	codes	of	the	airports	in	London

Querying:	Relational	Algebra

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List	the	codes	of	the	airports	in	London

πcode (σcity=‘London’			Airport)

{LHR,	LGW}

Querying:	Relational	Algebra

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List	the	airlines	that	fly	directly	from	London	to	Glasgow

Querying:	Relational	Algebra

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List	the	airlines	that	fly	directly	from	London	to	Glasgow

πairline ((Flight		⋈origin=code		(σcity=‘London’	 		Airport))	⋈destination=code		(σcity=‘Glasgow’			Airport))

Querying:	Relational	Algebra

Aux origin destination airline code city code city

LGW GLA U2 LGW London GLA Glasgow

List	the	airlines	that	fly	directly	from	London	to	Glasgow

πairline ((Flight		⋈origin=code		(σcity=‘London’	 		Airport))	⋈destination=code		(σcity=‘Glasgow’			Airport))

{U2}

defines	the	auxiliary	relation	Aux

• Selection:	σ

• Projection:	π

• Cross	product:		×

• Natural	join:	⋈

• Rename:	ρ

• Difference:	∖

• Union:	∪

• Intersection:	∩

Relational	Algebra

in	bold	are	the	primitive	operators

Formal	definitions	can	be	found	in	any	database	textbook

Querying:	Domain	Relational	Calculus

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List	all	the	airlines

{z	|	∃x∃y	Flight(x,y,z)}

Querying:	Domain	Relational	Calculus

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List	all	the	airlines

{BA,	U2,	OS}

Querying:	Domain	Relational	Calculus

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List	the	codes	of	the	airports	in	London

{x	|	∃y	Airport(x,y)	 	∧ y	=	London}

Querying:	Domain	Relational	Calculus

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List	the	codes	of	the	airports	in	London

{LHR,	LGW}

Querying:	Domain	Relational	Calculus

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List	the	airlines	that	fly	directly	from	London	to	Glasgow

{z	|	∃x∃y∃u∃v Airport(x,u)	 	∧ u	=	London		∧ Airport(x,u)	 	∧ u	=	London}		∧ Flight(x,y,z)}

Querying:	Domain	Relational	Calculus

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List	the	airlines	that	fly	directly	from	London	to	Glasgow

{U2}

{x	|	∀y	R(x,y)}										{x	|	¬R(x)}										{x,y |	R(x)	∨ R(y)}

Domain	Relational	Calculus

{x1,…,xk |	φ}

first-order	formula	with

free	variables	{x1,…,xk}

But,	we	can	express	“problematic”	queries,	i.e.,	depend	on	the	domain

Domain	Relational	Calculus

domain =		{1,2,3}

D =	{R(1,1),	R(1,2)}
Ans	=	{	}

{x1,…,xk |	φ}

first-order	formula	with

free	variables	{x1,…,xk}

But,	we	can	express	“problematic”	queries,	i.e.,	depend	on	the	domain

{x	|	∀y	R(x,y)}										{x	|	¬R(x)}										{x,y |	R(x)	∨ R(y)}

Domain	Relational	Calculus

domain =		{1,2}

D =	{R(1,1),	R(1,2)}
Ans	=	{1}

{x1,…,xk |	φ}

first-order	formula	with

free	variables	{x1,…,xk}

But,	we	can	express	“problematic”	queries,	i.e.,	depend	on	the	domain

{x	|	∀y	R(x,y)}										{x	|	¬R(x)}										{x,y |	R(x)	∨ R(y)}

Domain	Relational	Calculus

…thus,	we	adopt	the	active	domain	semantics - quantified	variables	range	over	

the	active	domain,	i.e.,	the	constants	occurring	in	the	input	database

{x1,…,xk |	φ}

first-order	formula	with

free	variables	{x1,…,xk}

But,	we	can	express	“problematic”	queries,	i.e.,	depend	on	the	domain

{x	|	∀y	R(x,y)}										{x	|	¬R(x)}										{x,y |	R(x)	∨ R(y)}

Algebra	=	Calculus

A	fundamental	theorem	(assuming	the	active	domain	semantics):

Theorem: The	following	query	langauges	are	equally	expressive

• Relational	Algebra	(RA)

• Domain	Relational	Calculus	(DRC)

• Tuple	Relational	Calculus	(TRC)

Note:	Tuple	relational	calculus is	the	declarative	language	introduce	by	Codd.	Domain	relational	

calculus	has	been	introduced	later	as	a	formalism	closer	to	first-order	logic

{	|	∃x∃y∃z∃w∃v		Airport(x,Vienna)	 	∧ Airport(y,Glasgow)	 	∧

Flight(x,z,w)		∧ Flight(z,y,v)

Quiz!

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

Is	Glasgow	reachable	from	Vienna?

London

Vienna

Larnaca

Glasgow

Edinburgh

YES

Quiz!

London

Vienna

Larnaca

Glasgow

Edinburgh

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

Is	Glasgow	reachable	from	Vienna?

NO

{	|	∃x∃y∃z∃w∃v		Airport(x,Vienna)	 	∧ Airport(y,Glasgow)	 	∧

Flight(x,z,w)		∧ Flight(z,y,v)

{	|	∃x∃y∃z∃w∃v		Airport(x,Vienna)	 	∧ Airport(y,Glasgow)	 	∧

Flight(x,z,w)		∧ Flight(z,y,v)

Quiz!

London

Vienna

Larnaca

Glasgow

Edinburgh

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

Is	Glasgow	reachable	from	Vienna?

YES∧ Flight(z,z1,w1)	 	∧

∃z1∃w1

Quiz!

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

Is	Glasgow	reachable	from	Vienna?

NO

London

Vienna

Larnaca

Glasgow

Edinburgh

{	|	∃x∃y∃z∃w∃v		Airport(x,Vienna)	 	∧ Airport(y,Glasgow)	 	∧

Flight(x,z,w)		∧ Flight(z,y,v)

∧ Flight(z,z1,w1)	 	∧

∃z1∃w1

Quiz!

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

Is	Glasgow	reachable	from	Vienna?

London

Vienna

Larnaca

Glasgow

Edinburgh

Recursive	query	- not	expressible	in	RA/DRC/TRC

(unless	we	bound	the	number	of	intermediate	stops)

Complexity	of	Query	Languages

• The	goal	is	to	understand	the	complexity	of	evaluating	a	query	over	a	database

• Our	main	technical	tool	is	complexity	theory

• What	to	measure?	Queries	may	have	a	large	output,	and	it	would	be	unfair	to	

count	the	output	as	“complexity”

• We	therefore	consider	the	following	decision	problems:

− Query	Output	Tuple	(QOT)

− Boolean	Query	Evaluation	(BQE)

A	Few	Words	on	Complexity	Theory

details	can	be	found	in	the	standard	textbooks

see	also	notes	on	the	webpage	of	the	course

Complexity	Classes

TIME(f(n)) = {Π |	Π	is	decided	by	some	DTM	in	time	O(f(n))}

NTIME(f(n)) = {Π |	Π	is	decided	by	some	NTM	in	time	O(f(n))}

SPACE(f(n)) = {Π |	Π	is	decided	by	some	DTM	using	space	O(f(n))}

NSPACE(f(n)) = {Π |	Π	is	decided	by	some	NTM	using	space	O(f(n))}

PTIME = ⋃k>0 TIME(nk)

NP = ⋃k>0 NTIME(nk)

EXPTIME = ⋃k>0 TIME(2nk)

NEXPTIME = ⋃k>0 NTIME(2nk)

LOGSPACE = SPACE(log	n)

NLOGSPACE = NSPACE(log	n)

PSPACE = ⋃k>0 SPACE(nk)

EXPSPACE = ⋃k>0 SPACE(2nk)

Complexity	Classes

• We	can	now	recall	the	standard	time	and	space	complexity	classes:

these	definitions	are	relying	on	two-

tape	Turing		machines	with	a	read-

only	and	a	read/write	tape

• For	every	complexity	class	C	we	can	define	its	complementary	class	coC

Relationship	Among	Complexity	Classes

LOGSPACE		⊆ NLOGSPACE	⊆ PTIME		⊆ NP,	coNP ⊆

PSPACE		⊆ EXPTIME		⊆ NEXPTIME,	coNEXPTIME ⊆⋯

Some	useful	notes:

• For	a	deterministic	complexity	class	C,	coC =	C

• coNLOGSPACE =	NLOGSPACE

• It	is	generally	believed	that	PTIME	≠ NP,	but	we	don’t	know

• PTIME		⊂ EXPTIME		⇒ at	least	one	containment	between	them	is	strict

• PSPACE	=	NPSPACE,	EXPSPACE	=	NEXPSPACE,	etc.

• But,	we	don’t	know	whether	LOGSPACE	=	NLOGSPACE

Complete	Problems

• These	are	the	hardest	problems	in	a	complexity	class

• A	problem	that	is	complete	for	a	class	C,	it	is	unlikely	to	belong	in	a	lower	class

• A	problem	Π	is	complete for	a	complexity	class	C,	or	simply	C-complete,	if:

1. Π ∈ C

2. Π	is	C-hard,	i.e.,	every	problem	Π’	∈ C	can	be	efficiently	reduced to	Π

• To	show	that	Π	is	C-hard	it	suffices	to	reduce	some	C-hard	problem	Π’	to	it

there	exists	a	logspace algorithm	that	computes	a	function	f	such	that

w ∈ Π’	 iff f(w) ∈ Π - in	this	case	we	write	Π’≤L Π

Some	Complete	Problems

• NP-complete

‒ SAT	(satisfiability	of	propositional	formulas)

‒ Many	graph-theoretic	problems	(e.g.,	3-colorability)

‒ Traveling	salesman

‒ etc.

• PSPACE-complete

‒ Quantified	SAT	(or	simply	QSAT)

‒ Equivalence	of	two	regular	expressions

‒ Many	games	(e.g.,	Geography)

‒ etc.

Back	to	Query	Languages

Complexity	of	Query	Languages

• The	goal	is	to	understand	the	complexity	of	evaluating	a	query	over	a	database

• Our	main	technical	tool	is	complexity	theory

• What	to	measure?	Queries	may	have	a	large	output,	and	it	would	be	unfair	to	

count	the	output	as	“complexity”

• We	therefore	consider	the	following	decision	problems:

− Query	Output	Tuple	(QOT)

− Boolean	Query	Evaluation	(BQE)

Complexity	of	Query	Languages

QOT(L)

Input:	a	database	D,	a	query	Q/k ∈ L,	a	tuple	of	constants	t	∈ adom(D)k

Question: t ∈ Q(D)?	

Some	useful	notation:

• Given	a	database	D,	and	a	query	Q,	Q(D)	is	the	answer to	Q over	D

• adom(D)	is	the	active	domain of	D - the	constants	occurring	in	D

• We	write	Q/k for	the	fact	that	the	arity of	Q is	k	≥ 0

L is	some	query	language;	for	example,	RA,	DRC,	etc.	 - we	will	see	several	query	languages

Complexity	of	Query	Languages

BQE(L)

Input:	a	database	D,	a	Boolean	query	Q ∈ L

Question: is	Q(D)	non-empty?	

Some	useful	notation:

• Given	a	database	D,	and	a	query	Q,	Q(D)	is	the	answer to	Q over	D

• adom(D)	is	the	active	domain of	D - the	constants	occurring	in	D

• We	write	Q/k for	the	fact	that	the	arity of	Q is	k	≥ 0

L is	some	query	language;	for	example,	RA,	DRC,	etc.	 - we	will	see	several	query	languages

(≡L	means	logspace-equivalent)

Theorem: QOT(L)	≡L BQE(L),	where	L ∈ {RA,	DRC,	TRC}

BQE(L)

Input:	a	database	D,	a	Boolean	query	Q ∈ L

Question: is	Q(D)	non-empty?	

QOT(L)

Input:	a	database	D,	a	query	Q/k ∈ L,	a	tuple	of	constants	t	∈ adom(D)k

Question: t ∈ Q(D)?	

Complexity	of	Query	Languages

Theorem: QOT(DRC)	≡L BQE(DRC)

Proof: (≤L)	Consider	a	database	D,	a	k-ary query	Q =	{x1,…,xk |	φ},	and	a	tuple	(t1,…,tk)

Let	Qbool =	{		|	∃x1⋯∃xk (φ ∧ x1	=	t1	 ∧ x2	=	t2 ∧⋯ ∧ xk	=	tk)	}

Clearly,	(t1,…,tk) ∈ Q(D) iff Qbool (D)	is	non-empty

(≥L)	Trivial		- a	Boolean	domain	RC	query	is	a	domain	RC	query

Complexity	of	Query	Languages

(let	us	show	this	for	domain	relational	calculus)

BQE[D](L)

Input:	a	Boolean	query	Q ∈ L

Question: is	Q(D)	non-empty?	

Complexity	Measures

• Combined	complexity - both	D and	Q are	part	of	the	input

• Query	complexity - fixed	D,	input	Q

• Data	complexity - input	D,	fixed	Q

BQE[Q](L)

Input:	a	database	D

Question: is	Q(D)	non-empty?	

Theorem: For	L ∈ {RA,	DRC,	TRC}	the	following	hold:

• BQE(L)	is	PSPACE-complete	(combined	complexity)

• BQE[D](L)	is	PSPACE-complete,	for	a	fixed	database	D	(query	complexity)

• BQE[Q](L)	is	in	LOGSPACE,	for	a	fixed	query	Q ∈ L (data	complexity)

Complexity	of	RA,	DRC,	TRC

Proof hints:

• Recursive algorithm that uses polynomial space in Q and logarithmic space in D

• Reduction from QSAT (a standardPSPACE-hardproblem)

Evaluating	(Boolean)	DRC	Queries

Eval(D,φ) - for	brevity	we	write	φ instead	of	{	|	φ}

• Ifφ	= R(t1,…,tk),	 then YES		iff R(t1,…,tk) ∈ D

• Ifφ	= ψ1∧ψ2,	then YES		iff Eval(D,ψ1) =	YES		and		Eval(D,ψ2) =	YES	

• Ifφ	= ¬ψ,	thenNO		iff Eval(D,ψ) =	YES

• Ifφ	= ∃x	ψ(x),	then YES		iff for	some	t	∈ adom(D),	Eval(D,ψ(t)) =	YES

Lemma: It holds that

• Eval(D,φ) always terminates - this is trivial

• Eval(D,φ) = YES iff Q(D) is non-empty, whereQ = { | φ}

• Eval(D,φ) uses O(|φ| ⋅ log |φ| + |φ|2 ⋅ log |D|) space

Theorem: For	L ∈ {RA,	DRC,	TRC}	the	following	hold:

• BQE(L)	is	PSPACE-complete	(combined	complexity)

• BQE[D](L)	is	PSPACE-complete,	for	a	fixed	database	D	(query	complexity)

• BQE[Q](L)	is	in	LOGSPACE,	for	a	fixed	query	Q ∈ L (data	complexity)

Complexity	of	RA,	DRC,	TRC

Proof hints:

• Recursive algorithm that uses polynomial space in Q and logarithmic space in D

• Reduction from QSAT (a standardPSPACE-hardproblem)

EQUIV(L)

Input:	two	queries	Q1 ∈ L	and Q2 ∈ L

Question:Q1≡	Q2?	 or		Q1(D)	=	Q2(D)	for	every	(finite)	database	D?

SAT(L)

Input:	a	query	Q ∈ L

Question: is	there	a	(finite)	database	D such	that	Q(D)	is	non-empty?	

Other	Important	Algorithmic	Problems

CONT(L)

Input:	two	queries	Q1 ∈ L	and Q2 ∈ L

Question:Q1⊆	Q2?	 or		Q1(D)	⊆Q2(D)	for	every	(finite)	database	D?

EQUIV(L)

Input:	two	queries	Q1 ∈ L	and Q2 ∈ L

Question:Q1≡	Q2?	 or		Q1(D)	=	Q2(D)	for	every	(finite)	database	D?

SAT(L)

Input:	a	query	Q	∈ L

Question: is	there	a	(finite)	database	D	such	that	Q(D)	is	non-empty?	

Other	Important	Algorithmic	Problems

CONT(L)

Input:	two	queries	Q1 ∈ L	and Q2 ∈ L

Question:Q1⊆	Q2?	 or		Q1(D)	⊆Q2(D)	for	every	(finite)	database	D?

these	problems	are	important	

for	optimization	purposes

SAT(L)

Input:	a	query	Q ∈ L

Question: is	there	a	(finite)	database	D such	that	Q(D)	is	non-empty?	

Other	Important	Algorithmic	Problems

• If the answer is no, then the input query Q makes no sense

• Query evaluation becomes trivial - the answer is always NO!

EQUIV(L)

Input:	two	queries	Q1 ∈ L	and Q2 ∈ L

Question:Q1≡	Q2?	 or		Q1(D)	=	Q2(D)	for	every	(finite)	database	D?

Other	Important	Algorithmic	Problems

• Replace a query Q1 with a query Q2 that is easier to evaluate

• But, we have to be sure that Q1(D) = Q2(D) for every database D

• Approximate a query Q1 with a query Q2 that is easier to evaluate

• But, we have to be sure that Q1(D)⊆Q2(D) for every database D

CONT(L)

Input:	two	queries	Q1 ∈ L	and Q2 ∈ L

Question:Q1⊆	Q2?	 or		Q1(D)	⊆Q2(D)	for	every	(finite)	database	D?

Other	Important	Algorithmic	Problems

Theorem: For	L ∈ {RA,	DRC,	TRC},	SAT(L)	is	undecidable

Proof hint: By reduction from the halting problem.

Given a Turing machine M, we can construct a query QM ∈ L such that:

M	halts	on	the	empty	string			iff there	exists	a	database	D such	that	Q(D)	is	non-empty

SAT	is	Undecidable

Note:	Actually,	this	result	goes	back	to	the	1950	when	

Boris	A.	Trakhtenbrot	proved	that	the	problem	of	deciding	

whether	a	first-order	sentence	has	a	finite	model	is	undecidable

An	easy	consequence	of	the	fact	that	SAT	is	undecidable	is	that:

Theorem: For	L ∈ {RA,	DRC,	TRC},	EQUIV(L)	and	CONT(L)	are	undecidable

Proof: By reduction from the complement of SAT(L)

• Consider a query Q ∈ L - i.e., an instance of SAT(L)

• Let	Q’ be	a	query	that	is	unsatisfiable,	i.e.,	Q’(D)	is	empty	for	every	D

• For	example,	when	L =	DRC,	Q’ can	be	the	query	{	|	∃x	R(x)	∧¬R(x)}

• Clearly,Q	is	unsatisfiable iff Q	≡Q’	(or	even	Q	⊆Q’)

EQUIV	and	CONT	are	Undecidable

Recap

• The main languages for querying relational databases are:

− Relational Algebra (RA)

− Domain Relational Calcuclus (DRC)

− Tuple Relational Calculus (TRC)

• Evaluation is decidable, and highly tractable indata complexity

− Foundations of the database industry

− The core of SQL is equally expressive to RA/DRC/TRC

RA =	DRC =	TRC

(under	the	active	domain	semantics)

• Satisfiability, equivalence and containment are undecidable

− Perfect query optimization is impossible

