Relational Model

Advanced Topics in Foundations of Databases, University of Edinburgh, 2019/20

Relational Model

* Many ad hoc models before 1970
— Hard to work with]

— Hard to reason about

e 1970: Relational Model by Edgar Frank Codd

— Data are stored in relations (or tables)
— Queried using a declarative language
— DBMS converts declarative queries into procedural queries that are

optimized and executed

* Key Advantages
— Simple and clean mathematical model (based on logic)

— Separation of declarative and procedural

Relational Databases

Constants
VIE, LHR, ...
BA, U2, ...

Vienna, London, ...

Flight | origin destination airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE 0S
Airport | code city
VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

Relational Databases

Relations

Constants
VIE, LHR, ...
BA, U2, ...

Vienna, London, ...

Flight | origin destination airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE 0S
Airport | code city
VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

Relational Databases

Relations

Constants
VIE, LHR, ...
BA, U2, ...

Vienna, London, ...

Flight | origin destination airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE 0S
Airport | code city
VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

Tuples

Relational atoms
Flight(LHR,EDI,BA)
Airport(LGW,London)

Querying: Relational Algebra

List all the airlines

Flight | origin destination airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE 0S

Airport = code city
VIE Vienna
LHR London
LGW London
LCA Larnaca
GLA Glasgow
EDI Edinburgh

Querying: Relational Algebra

List all the airlines

Flight | origin destination airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE 0S

{

{BA, U2, OS}

Tairline F“ght

Airport = code city
VIE Vienna
LHR London
LGW London
LCA Larnaca
GLA Glasgow
EDI Edinburgh

Querying: Relational Algebra

List the codes of the airports in London

Flight | origin destination airline Airport = code city
VIE LHR BA VIE Vienna
LHR EDI BA LHR London
LGW GLA U2 LGW London
LCA VIE (ON) LCA Larnaca
GLA Glasgow
EDI Edinburgh

Querying: Relational Algebra

List the codes of the airports in London

Flight | origin destination airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE 0S

Airport = code city

VIE Vienna
LHR London

LGW London
LCA Larnaca
GLA Glasgow
EDI Edinburgh
{

{LHR, LGW}

TMcode (ocity=’London' Ail’pOl’t)

Querying: Relational Algebra

List the airlines that fly directly from London to Glasgow

Flight | origin destination airline Airport = code city
VIE LHR BA VIE Vienna
LHR EDI BA LHR London
LGW GLA U2 LGW London
LCA VIE (ON) LCA Larnaca
GLA Glasgow
EDI Edinburgh

Querying: Relational Algebra

List the airlines that fly directly from London to Glasgow

Flight | origin destination airline Airport = code city
VIE LHR BA VIE Vienna
LHR EDI BA LHR London
LGW GLA U2 LGW London
LCA VIE (ON) LCA Larnaca
GLA Glasgow
EDI Edinburgh

Tirline ((Fllght Norigin:code (Gcity:’London’ Airport)) *destination=code (Gcity:’GIasgow' Airport))

Querying: Relational Algebra

List the airlines that fly directly from London to Glasgow

Aux | origin | destination | airline | code city code city
LGW GLA U2 LGW | London | GLA | Glasgow
{U2}

Tirline ((Fllght Norigin:code (Gcity:’London’ Airport)) *destination=code (Gcity:’GIasgow' Airport))

-)
Y

defines the auxiliary relation Aux

Relational Algebra

* Selection: o

* Projection: it

* Crossproduct: X

* Naturaljoin: ™

* Rename:p

» Difference: \ in bold are the primitive operators
* Union: U

* Intersection: N

Formal definitions can be found in any database textbook

Querying: Domain Relational Calculus

List all the airlines

Flight | origin destination airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE 0S

Airport = code city
VIE Vienna
LHR London
LGW London
LCA Larnaca
GLA Glasgow
EDI Edinburgh

Querying: Domain Relational Calculus

List all the airlines

Flight | origin destination airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE 0S

{

{BA, U2, OS}

{z | Ax3y Flight(x,y,z)}

Airport = code city
VIE Vienna
LHR London
LGW London
LCA Larnaca
GLA Glasgow
EDI Edinburgh

Querying: Domain Relational Calculus

List the codes of the airports in London

Flight | origin destination airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE 0S

Airport = code city
VIE Vienna
LHR London
LGW London
LCA Larnaca
GLA Glasgow
EDI Edinburgh

Querying: Domain Relational Calculus

List the codes of the airports in London

Flight | origin destination airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE 0S

Airport = code city
VIE Vienna
LHR London
LGW London
LCA Larnaca
GLA Glasgow
EDI Edinburgh
{
{LHR, LGW}

{x | Ay Airport(x,y) A y=London}

Querying: Domain Relational Calculus

List the airlines that fly directly from London to Glasgow

Flight | origin destination airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE 0S

Airport = code city
VIE Vienna
LHR London
LGW London
LCA Larnaca
GLA Glasgow
EDI Edinburgh

Querying: Domain Relational Calculus

List the airlines that fly directly from London to Glasgow

Flight | origin destination airline Airport = code city
VIE LHR BA VIE Vienna
LHR EDI BA LHR London
LGW GLA U2 LGW London
LCA VIE (ON) LCA Larnaca
GLA Glasgow
ﬂ EDI Edinburgh

{U2}

{z | Ix3y3uAv Airport(x,u) A u=London A Airport(x,u) A u=London} A Flight(x,y,z)}

Domain Relational Calculus

Xppe X | B}

\

first-order formula with

free variables {x4,...,Xy}

But, we can express “problematic” queries, i.e., depend on the domain

{x | Yy R(x,y)} {x | =R(x)} Xy | R(x) VR(y)}

Domain Relational Calculus

Xppe X | B}

\

first-order formula with

free variables {x4,...,Xy}

But, we can express “problematic” queries, i.e., depend on the domain

{x| VyR(xy)}

domain = {1,2,3}
Ans={}
D ={R(1,1), R(1,2)}

Domain Relational Calculus

Xppe X | B}

\

first-order formula with

free variables {x4,...,Xy}

But, we can express “problematic” queries, i.e., depend on the domain

{x| VyR(xy)}

domain = {1,2}
Ans = {1}
D ={R(1,1), R(1,2)}

Domain Relational Calculus

Xppe X | B}

\

first-order formula with

free variables {x4,...,Xy}

But, we can express “problematic” queries, i.e., depend on the domain

{x | Yy R(x,y)} {x | =R(x)} Xy | R(x) VR(y)}

...thus, we adopt the active domain semantics - quantified variables range over

the active domain, i.e., the constants occurring in the input database

Algebra = Calculus

A fundamental theorem (assuming the active domain semantics):

Theorem: The following query langauges are equally expressive
* Relational Algebra (RA)
* Domain Relational Calculus (DRC)

* Tuple Relational Calculus (TRC)

Note: Tuple relational calculus is the declarative language introduce by Codd. Domain relational

calculus has been introduced later as a formalism closer to first-order logic

Quiz!

Is Glasgow reachable from Vienna?

Flight | origin destination airline Airport = code city
VIE LHR BA VIE Vienna
LHR EDI BA LHR London
LGW GLA U2 LGW London
LCA VIE (ON) LCA Larnaca
GLA Glasgow
EDI Edinburgh

Edinburgh

Glasgow

{ | Ix3y3zaAw3v Airport(x,Vienna) A Airport(y,Glasgow) A
London

Flight(x,z,w) A Flight(z,y,v)

Larnaca

Vienna YES

Quiz!

Is Glasgow reachable from Vienna?

Flight | origin destination airline Airport = code city
VIE LHR BA VIE Vienna
LHR EDI BA LHR London
LGW GLA U2 LGW London
LCA VIE (ON) LCA Larnaca
GLA Glasgow
EDI Edinburgh

Edinburgh

Glasgow

{ | Ix3y3zaAw3v Airport(x,Vienna) A Airport(y,Glasgow) A
London

Flight(x,z,w) A Flight(z,y,v)

Larnaca

Vienna NO

Quiz!

Is Glasgow reachable from Vienna?

Flight | origin destination airline Airport = code city
VIE LHR BA VIE Vienna
LHR EDI BA LHR London
LGW GLA U2 LGW London
LCA VIE (ON) LCA Larnaca
GLA Glasgow
EDI Edinburgh

Edinburgh

Glasgow

Lond { | Ix3y3zaAw3v Airport(x,Vienna) A Airport(y,Glasgow) A
ondon
dz,dw, Flight(x,z,w) . Flight(z,y,v)
Larnaca l

Vienna A Flight(z,z;,w;) A YES

Quiz!

Is Glasgow reachable from Vienna?

Flight | origin destination airline Airport = code city
VIE LHR BA VIE Vienna
LHR EDI BA LHR London
LGW GLA U2 LGW London
LCA VIE (ON) LCA Larnaca
GLA Glasgow
EDI Edinburgh

Edinburgh

Glasgow

{ | Ix3y3zaAw3v Airport(x,Vienna) A Airport(y,Glasgow) A
London

Jz,3w, Flight(x,z,w) = Flight(z,y,v)
Larnaca l

Vienna A Flight(z,z;,w;) A NO

Quiz!

Is Glasgow reachable from Vienna?

Flight | origin destination airline Airport = code city
VIE LHR BA VIE Vienna
LHR EDI BA LHR London
LGW GLA U2 LGW London
LCA VIE (ON) LCA Larnaca
GLA Glasgow
EDI Edinburgh

Edinburgh

Glasgow

Recursive query - not expressible in RA/DRC/TRC
London
(unless we bound the number of intermediate stops)

Larnaca

Vienna

Complexity of Query Languages

* The goal is to understand the complexity of evaluating a query over a database
* Our main technical tool is complexity theory

 What to measure? Queries may have a large output, and it would be unfair to

count the output as “complexity”

* We therefore consider the following decision problems:
— Query Output Tuple (QOT)

— Boolean Query Evaluation (BQE)

A Few Words on Complexity Theory

details can be found in the standard textbooks

see also notes on the webpage of the course

Complexity Classes

Consider a functionf: N - N

TIME(f(n)) {N| Nis decided by some DTMin time O(f(n))}

NTIME(f(n))

{N | Nis decided by some NTM in time O(f(n))}

SPACE(f(n)) {N | Nis decided by some DTM using space O(f(n))}

NSPACE(f(n)) {N | Nis decided by some NTM using space O(f(n))}

Complexity Classes

* We cannow recall the standard time and space complexity classes:

PTIME = Uiso TIME(nK)
NP = Uiso NTIME(nk)
EXPTIME = Uyo TIME(2)
NEXPTIME = U NTIME(2"
LOGSPACE _ SPACE(log n) these definitions are relying on two-
tape Turing machines with a read-
NLOGSPACE = NSPACE(log n) _
only and a read/write tape
PSPACE = Uiso SPACE(nk)
EXPSPACE = U, SPACE(2"

* For every complexity class C we can define its complementary class coC

Relationship Among Complexity Classes

LOGSPACE © NLOGSPACE € PTIME & NP, coNP <

PSPACE © EXPTIME €S NEXPTIME, coNEXPTIME < ---

Some useful notes:
* For a deterministic complexity class C, coC=C
* coNLOGSPACE = NLOGSPACE
* Itis generally believed that PTIME # NP, but we don’t know
* PTIME C EXPTIME = atleastone containment between them is strict
* PSPACE = NPSPACE, EXPSPACE = NEXPSPACE, etc.
* But, we don’t know whether LOGSPACE = NLOGSPACE

Complete Problems

* These are the hardest problems in a complexity class

* A problem that is complete for a class C, it is unlikely to belong in a lower class

* A problem Nis complete for a complexity class C, or simply C-complete, if:
1. NecC

2. Nis C-hard,i.e., every problem IN" € C can be efficiently reduced to I

/

there exists a logspace algorithm that computes a function f such that

w E [T iff flw) €M - inthis case we write 1" <, 11

* Toshow thatis C-hardit suffices to reduce some C-hard problem I’ to it

Some Complete Problems

e NP-complete
— SAT (satisfiability of propositional formulas)
— Many graph-theoretic problems (e.g., 3-colorability)
— Travelingsalesman

— etc.

 PSPACE-complete
— Quantified SAT (or simply QSAT)
— Equivalence of two regular expressions
— Many games (e.g., Geography)

— etc.

Back to Query Languages

Complexity of Query Languages

* The goal is to understand the complexity of evaluating a query over a database
* Our main technical tool is complexity theory

 What to measure? Queries may have a large output, and it would be unfair to

count the output as “complexity”

* We therefore consider the following decision problems:
— Query Output Tuple (QOT)

— Boolean Query Evaluation (BQE)

Complexity of Query Languages

Some useful notation:
e Given a database D,and a query Q, Q(D) is the answer to Q over D
« adom(D)is the active domain of D - the constants occurringin D

* We write Q/k for the fact that the arity of Qisk >0

L is some query language; for example, RA, DRC, etc. - we will see several query languages

QOTI(L)
Input: a database D, a query Q/k € L, a tuple of constantst € adom(D)k
Question: t € Q(D)?

Complexity of Query Languages

Some useful notation:
e Given a database D,and a query Q, Q(D) is the answer to Q over D
« adom(D)is the active domain of D - the constants occurringin D

* We write Q/k for the fact that the arity of Qisk >0

L is some query language; for example, RA, DRC, etc. - we will see several query languages

BQE(L)
Input: a database D, a Boolean query Q €L

Question: is Q(D) non-empty?

Complexity of Query Languages

QOT(L)

Input: a database D, a query Q/k € L, a tuple of constantst € adom(D)k

Question:t € Q(D)?

BQE(L)
Input: a database D, a Boolean query Q €L

Question: is Q(D) non-empty?

Theorem: QOT(L) =, BQE(L), where L € {RA, DRC, TRC}

(=, means logspace-equivalent)

Complexity of Query Languages

(let us show this for domain relational calculus)
Theorem: QOT(DRC) =, BQE(DRC)
Proof: (<) Consider a database D, a k-ary query Q = {x4,...,.xc | ¢}, and a tuple (t4,...,ty)
Let Quoor = { | IXg-+Ix (P A x3=t3 A Xo=1 Ao A xe=1) }

Clearly, (ty,...,t) € Q(D) iff Quo (D) is non-empty

(=) Trivial - a Boolean domain RC query is a domain RC query

Complexity Measures

Combined complexity - both D and Q are part of the input

Query complexity - fixed D, input Q

Data complexity - input D, fixed Q

BQE[D](L)
Input: a Booleanquery Q € L

Question: is Q(D) non-empty?

BQE[Q](L)
Input: a database D

Question: is Q(D) non-empty?

Complexity of RA, DRC, TRC

Theorem: For L € {RA, DRC, TRC} the following hold:
 BQE(L)is PSPACE-complete (combined complexity)
 BQE[D](L)is PSPACE-complete, for a fixed database D (query complexity)
 BQE[Q](L)is in LOGSPACE, for a fixed query Q € L (data complexity)

Proof hints:
* Recursive algorithm that uses polynomial space in Q and logarithmic spacein D

e Reduction from QSAT (a standard PSPACE-hard problem)

Evaluating (Boolean) DRC Queries

Eval(D,d) - for brevity we write ¢ instead of { | ¢}

If(l) = R(tl,...,tk), then YES iff R(tl,...,tk) eD

If o =y, AU, then YES iff Eval(D,l;)=YES and Eval(D,{,)=YES

If ® = =, then NO iff Eval(D,)=YES

If = Ix P(x), then YES iff for some t € adom(D), Eval(D,(t)) = YES

Lemma: It holds that
e Eval(D,d)always terminates - thisis trivial
 Eval(D,d)=VYES iff Q(D)is non-empty, whereQ ={ | ¢}
* Eval(D,d)uses O(|]| - log |d] + [d]>- log |D]) space

Complexity of RA, DRC, TRC

Theorem: For L € {RA, DRC, TRC} the following hold:
 BQE(L)is PSPACE-complete (combined complexity)
 BQE[D](L)is PSPACE-complete, for a fixed database D (query complexity)
 BQE[Q](L)is in LOGSPACE, for a fixed query Q € L (data complexity)

Proof hints:
* Recursive algorithm that uses polynomial space in Q and logarithmic spacein D

e Reduction from QSAT (a standard PSPACE-hard problem)

Other Important Algorithmic Problems

SAT(L)
Input:aquery Q€L

Question: is there a (finite) database D such that Q(D) is non-empty?

EQUIV(L)

Input: twoqueries Q; ELand Q; €L

Question: Q; = Q,? or Q4(D) = Q,(D) for every (finite) database D?

CONTI(L)

Input: twoqueriesQ; ELand Q, €L

Question: Q; € Q,? or Q,(D) € Q,(D) for every (finite) database D?

Other Important Algorithmic Problems

these problems are important

for optimization purposes

Other Important Algorithmic Problems

SAT(L)
Input:aquery Qe L
Question: is there a (finite) database D such that Q(D) is non-empty?

* |fthe answeris no, then the input query Q makes no sense

* Query evaluation becomes trivial - the answeris always NO!

Other Important Algorithmic Problems

EQUIV(L)
Input: twoqueries Q; € Land Q, €L
Question: Q; = Q,? or Q4(D) = Q,(D) for every (finite) database D?

* Replaceaquery Q; witha query Q, thatis easier to evaluate

* But, we have to be sure that Q;(D) = Q,(D) for every database D

Other Important Algorithmic Problems

CONTI(L)

Input: twoqueriesQ; € Land Q; €L

Question: Q; € Q,? or Q4(D) € Q,(D) for every (finite) database D?

e Approximate a query Q; with a query Q, thatis easier to evaluate

* But, we have to be sure that Q;(D) € Q,(D) for every database D

SAT is Undecidable

Theorem: ForL € {RA, DRC, TRC}, SAT(L) is undecidable

Proof hint: By reduction from the halting problem.
Given a Turing machine M, we can construct a query Qy, € L such that:

M halts on the empty string iff there exists a database D such that Q(D) is non-empty

Note: Actually, this result goes back to the 1950 when

Boris A. Trakhtenbrot proved that the problem of deciding

whether a first-order sentence has a finite model is undecidable

EQUIV and CONT are Undecidable

An easy consequence of the fact that SAT is undecidable is that:

Theorem: ForL € {RA, DRC, TRC}, EQUIV(L) and CONT(L) are undecidable

Proof: By reduction from the complement of SAT(L)
 Consideraquery Q€L - i.e.,an instance of SAT(L)
* LetQ’ be aquery that is unsatisfiable, i.e., Q'(D) is empty for every D
* For example, when L=DRC, Q' can be the query { | Ix R(x) A =R(x)}

* Clearly, Qis unsatisfiable iff Q= Q' (or even Q € Q)

Recap

* The main languages for querying relational databases are:

— Relational Algebra (RA)

- Domain Relational Calcuclus (DRC) RA = DRC=TRC

— Tuple Relational Calculus (TRC) (under the active domain semantics)

e Evaluationis decidable, and highly tractable in data complexity
— Foundations of the database industry

— The core of SQL is equally expressive to RA/DRC/TRC

e Satisfiability, equivalence and containment are undecidable

— Perfect query optimizationisimpossible

